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______________________________________________________________ 

ABSTRACT 

This paper presents a discussion on different techniques that can be used for the analysis of 
multispectral images (i.e., images taken in more than three spectral bands) that are acquired in 
the context of Cultural Heritage or Archaeological studies.  False Color imaging, Blind Source 
Separation methods and techniques based on the use of Artificial Neural Networks are 
discussed. Examples are presented on the application of these methods to the study of Cultural 
Heritage and Archaeology. 

______________________________________________________________ 
 
1. INTRODUCTION

Multispectral imaging is one of the most diffused 
techniques for the study of Cultural Heritage and 
Archaeological paintings[1-5]. Although the spectral 
resolution of this kind of analysis is, in general, 
very limited, the amount of information that can be 
obtained is extremely high, considering the high 
spatial resolution of the images that can be 
obtained with very simple experimental setups. 
In its simpler application, multispectral imaging 
implies the acquisition of color and, typically, 
infrared images in at least four spectral bands 
(three in the visible region, RGB, and one in the 
infrared, Ir). Although most of the statistical 
methods that will be discussed in this paper could 
be, in principle, applied to less, more, or different 
spectral bands, even the minimum set of RGB and 
Ir images is a good example of how multispectral 
imaging can provide an information not visible to 
the eye (infrared band) that is not trivial to 
visualize together with the RGB visible 
information. 
Several technique have been proposed, in the last 
decades, for extracting from a set of multispectral 
images information on the materials used for the 
realization of the painting[6-9] or for evidencing 
hidden patterns through the elaboration of the 
digital images[10-11].  

The approaches normally used imply the reduction 
of the number of bands to be visualized to three, 
for exploiting the possibility of visualizing the 
result as a (false) color image[13-16] or in any case a 
linear combination of the multispectral images for 
evidencing patterns and similarities[10-11,17].  Most of 
these methods can be applied using blind 
algorithms, which operates automatically without 
the intervention of an operator[18-23]. 
In the following, we will discuss the applications of 
the main statistical methods used, with a specific 
attention to the study of Cultural Heritage and 
Archaeological paintings. 

2. TECHNIQUES FOR THE ANALYSIS OF 

MULTISPECTRAL SETS OF IMAGES 

2.1 False color imaging 
 

The problem of visualizing in color a set of images 
acquired in more than three spectral bands 
(typically Blue (B: 400-450 nm), Green (G: 450-
550 nm), Red (R: 550-650 nm) and Infrared (Ir > 
700 nm)) is usually solved in the simplest way, i.e. 
getting rid of one of the three images acquired in 
the visible and using the other two plus the 
infrared for building a (false) color image. The 
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canonical way of doing this substitution practically 
corresponds to a shift of the spectral bands 
towards the Infrared. The Blue image is discarded 
and substituted with the image in the Green band, 
the Green image is substitute with the Red and the 
Red is substituted with the Infrared (IrRG false 
color imaging). An example of this procedure is 
shown in figure 1, using a set of images acquired on 
a detail of the painting of Ghirlandaio “The 
Crowning of the Virgin”, conserved at the Palazzo 
Eroli Museum in Narni (TR). 

 
Figure 1: Color (RGB) and False Color Images (IrRG). 

It’s worth noting that, although there is a general 
agreement, among the operators in the field, in 
identifying the False Color Image with the IrRG 
subset of the multispectral images, in fact many 
other ‘False Color’ images can be built, according 
to the specific needs. The most used ‘non-
canonical’ False Color images that can be built 
from a set of four are the IrGB False Color (the Red 
image is replaced with the Infrared, this approach 
has the advantage of giving a more realistic 
restitution of the colors) and the Infrared inverse 
False Color Image, which is a canonical False Color 
image in which the Infrared band is substituted by 
its negative (   RG). This last False Color image is 
particularly suited for enhancing underdrawings 
and pentimenti in paintings, since the black lines 
in the Infrared are transformed in bright red lines, 
using this kind of restitution. The only practical 
advantage of using the canonical False Color 
approach (IrRG) instead of other False Color 
restitutions is the availability of reference materials 
that have been already studied, in the past, with 
this kind of imaging[6-7,9]. It is commonly believed 
that some kind of identification of the pigments 
can be obtained from the False Color associated to 
them. In most cases, this color is given, essentially, 
by the red component of the False Color image 
(Infrared band); however, this component is 
extremely sensitive to the structure of the painted 
layer, due to the characteristic of Infrared radiation 
of penetrating under the surface (if the pigment is 

at least partially transparent at this wavelength). 
Therefore, the qualitative identification of 
pigments through their color in the False Color 
image is in general problematic, and should be 
discouraged in common practice when there is the 
evidence of a superposition of different painted 
layers that could interact in a complex way with the 
infrared radiation. 

2.2 Chromatic derivative imaging 

The Chromatic Derivative Imaging (ChromaDI) is 
a variant of False Color imaging which is obtained 
through the subtraction of consecutive couples of 
spectral images, as schematically shown in figure 2 
(detail of a roman painted sarcophagus, III century 
A.D.)  
The method was introduced by the authors[24] with 
the intent of building a False Color image which 
would take into account the information from all 
the multispectral images acquired, without 
excluding a priori one of the four images in the 
multispectral set (the method can also be 
generalized to multispectral sets with more than 4 
images). The ChromaD Image gives information on 
the changes in reflectivity of the object with the 
wavelength; with respect to the canonical False 
Color Imaging, the differences between the optical 
behavior of the various pigments is exalted, taking 
into account the changes occurring while passing 
from the shorter wavelengths (blue band, which is 
more sensitive to the surface details) to the longer 
ones (green and red bands) in the visible image. 

 
Figure 2: ChromaD Image construction. 

1.1 2.3 Blind separation methods 
 

Blind separation methods are typically applied for 
the unsupervised separation of features in the 
multispectral image set that are not immediately 
apparent in the corresponding Color/False 
Color/ChromaD images. A simple assumption is 
that the observed images result from the 
superposition of individual patterns that combine 
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linearly to form the final appearance. If x(i,j) is an 
N-vector map representing the multispectral image 
and s(i,j) is an M-vector map representing the 
collection of the original patterns, we can assume 
that 

                 (1) 
 

where (i,j) is the pixel index and the N×M-matrix 
A is called mixing matrix. Blind separation 
techniques consist in estimating s from the 
multispectral data x, making assumptions of 
statistical nature. For example, the elements of 
vector s can be considered as mutually 
independent, non-Gaussian random variables. This 
leads to the class of separation techniques denoted 
as Independent Component Analysis (ICA)[20-21]. 
Alternatively, uncorrelatedness rather than 
independence can be imposed [23-24]. This leads to 
the Principal Component Analysis techniques[27] 
(PCA), through which a set of N multispectral 
channels produces N images representing mutually 
uncorrelated patterns. 
The sets of images s(i,j) produced by ICA or PCA 
are often much more readable than the original 
multispectral images. Each output image carries 
information from the entire multispectral set, and 
is likely to highlight patterns with peculiar spectral 
signatures that are not represented in the others.  
An example application of PCA analysis to a mural 
painting of an Etruscan tomb in Chiusi (Siena) is 
shown in figure 3. A multispectral set of six images, 
taken in the RGB bands plus three Infrared bands 
(centered around 850, 950 and 1050 nm, 
respectively) was used as input. Note that there is 
no association between the PCA images and the 
bands where the original multispectral images 
were acquired, since each output of the Blind 
Separation Technique is a linear combination of all 
the input images. However, it seems also clear that 
each output image brings a different information 
from the others. 

 
Figure 3: PCA separation of the upper set of multispectral 
images. 

The third image from the left, in the output, is 
particularly interesting because it shows the 
evidence of a small vase in the right hand of the 
figure, which is very difficult to distinguish even in 

the Infrared image taken at 1050 nm, the most 
readable of the multispectral images. The 
comparison of the two images is shown in figure 4. 

 
 

 
Figure 4: Up: Infrared (1050 nm) image; Down: One of the PCA 
outputs from the multispectral channel set. The images are 
shown in negative for exalting the contours. 
Similar results can be obtained imposing different statistical 
constraints on the images s (Orthogonalization, ICA[24]). 

A possible alternative approach implies a different 
definition of the concept of ‘similarity’ between the 
spectral signatures in the multispectral images set. 
A way of representing the multispectral image set 
is as a two-dimensional spatial structure, defined 
by the pixel index (i,j), where each pixel is 
associated to an N-dimensional vector whose 
components are the pixel intensities in the 
corresponding spectral images. In other words, as 
in conventional color imaging each pixel is 
associated with a three dimensional vector whose 
components are its intensities in the Red, Green 
and Blue bands, in multispectral imaging an N-
vector is associated to each pixel, with components 
corresponding to the intensity of the same pixel in 
the N channels.  
The distance d between two N-dimensional vectors 
x and x’, associated to different pixels (i,j) and 
(i’,j’), can be defined as either the Euclidean 
distance: 

          
    

     (2) 
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or the spectral angle between them, commonly 
used in remote sensing applications[30]: 

        
    

       
    (3) 

The difference between these two definitions is 
crucial and has to be carefully considered, as the 
first definition sees as ‘distant’ vectors representing 
similar (hyper)colors with different intensities, 
while the second discriminates the vectors 
according to the similarity of their associated 
(hyper)colors, independently on their intensities. 
An example where the definition (3) can be more 
useful than (2) involves the manual selection of a 
pixel in the image and the automatic identification 
of all the other pixels that have ‘similar’ colors, 
after a proper proximity threshold is set. This 
approach requires the supervision of the operator, 
but has the advantage of being more selective with 
respect to a fully automatic separation technique. 
The application of this technique to the previous 
painting is shown in figure 5. The pixels marked in 
yellow are the ones showing an optical behavior 
similar to that of the figure’s hair, within a 
threshold angle between the hypercolor vectors of 
30 degrees. 

 

 

 

 

 

 

 

 
Figure 5: 
Identification of the 
pixels showing an 
optical behavior 
similar to that of the 
figure’s hair (angle 
between the 
hypercolor vectors < 
30 degrees). 

From the observation of figure 5 it can be seen that 
the outline of the figure was probably realized with 
the same pigment used for the hair of the figure. 
This is not immediately evident in the original 
multispectral images, nor in the images obtained 
using the PCA method. 

2.4 Neural Networks Analysis 
 

The analysis of multispectral images can be 
performed using another unsupervised method 
based on Artificial Neural Networks[26], called 

Kohonen Self-Organizing Map (SOM)[27]. The SOM 
Network is a self-organized Neural Network that 
consists of neurons representing a N-dimensional 
weight vector, where N is the dimension of the 
multispectral (hyper)vector. The pixels in the 
image are assigned to the node which is ‘closer’ to 
their (hyper)color. The different neurons adjust 
their weights (hypercolors) in order to get the 
largest possible number of pixels, in a competitive 
way. The SOM method is particularly suited for 
classification purposes[28-29], since each neuron of 
the map is associated to samples that are in some 
way different from the ones associated to the other 
neurons. From a practical point of view, the 
number of neurons in the map is chosen in order to 
cover the chromatic variations in the image to be 
analyzed. An example of the application of this 
method is given on the anonymous XVI century 
painting shown in figure 6, representing a scene of 
the Plague in Sansepolcro. 

 

Figure 6: The Plague in Sansepolcro, oil on wood 
(Anonymous, XVI century). 

The output of a 3x3 SOM, obtained from a set of 
four images (RGB+Infrared) of the painting, is 
shown in figure 7.  
The SOM approach can be used for identifying in 
the painting the zones corresponding to pigments 
which shows a similar optical behavior. The 
technique is fast and works in a fully automatic 
way. Since the SOM method implies the calculation 
of distances between (hyper)colors, different 
results might be obtained according to the 
definition of distance used (eq. (2) or eq. (3)). Note 
that, contrarily to the Blind Separation Methods 
discussed in the previous subsection, the number 
of SOM nodes can be larger than the number of 
input images. Each pixel in the image is associated 
to one and only one neuron, whose associated 
weights can be interpreted as the components of 
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the hypercolor vector associated to the centroid of 
their distribution; the number of pixels associated 
to each neuron can be small or large, depending on 
the neuron color, and a ‘distance’ between the 
neurons can be defined, which indicates how 
different are, in fact, their colors in the SOM. 

 
Figure 7: The Plague in Sansepolcro, oil on wood (Anonymous, 
XVI century). The distance between colors is defined according 
to eq. (2). 

The images corresponding to each node are in 
Black and White, since the single pixels can be 
associated to the corresponding neuron (White) or 
not (Black). These images can be colorized in 
different hues (arbitrarily), and merged together in 
a single (false color) segmented image, as shown in 
figure 8, where each color marks the pixels with 
similar optical behavior.  

CONCLUSIONS 

Multispectral imaging sets can be analyzed in 
many different ways, starting from the direct 
observation of the single images or through a 
simple reduction method as False Color Imaging. 
More sophisticated methods, such as ChromaD 
Imaging and Blind Separation Methods, imply the 
application of linear transformations on the 
original multispectral images. These latter Blind 
Methods depend on the definition of a distance 
among (hyper)colors, that can be chosen to be 
Euclidean or being related to the angle between the 
(hyper)vectors representing the optical behavior of 
the materials under study. Finally, non-linear 
methods based on the use of Artificial Neural 
Networks can be applied to obtain a segmentation 
of the image according to the different pigments 
used.  
None of the methods presented here is a priori 
better than the others. According to the specific 
situation under study, one or more methods can be 

more informative than others. Due to the intrinsic 
simplicity of the numerical treatment, different 
approaches can be easily tested and compared, to 
obtain a better readability of the images and, 
consequently, a better understanding of the optical 
properties of the object under study, exploiting at 
the best the power of the multispectral imaging 
techniques. 

 
Figure 8: Segmentation in false colors of the painting in figure 
6, according to the SOM results shown in figure 7. 
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