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ABSTRACT 

Born and Oppenheimer gave an approximate separation of the molecular eigenfunction into 
electronic, vibrational, and rotational parts, but at the end of their paper showed that the two 
angles describing rotation of the nuclei in a diatomic molecule are exactly separable. A year later 
in a two-part work devoted strictly to diatomic molecules, Wigner and Witmer gave (1) an exact 
diatomic eigenfunction and (2) the rules correlating the electronic state of a diatomic molecule 
to the orbital and spin momenta of the separated atoms. The second part of the Wigner-Witmer 
became famous for its correlation rules. The first part containing the exact diatomic 
eigenfunction from which correlation rules were obtained has been ignored. Plausible 
speculation gives two explanations for why the exact Wigner-Witmer diatomic eigenfunction has 
been ignored for more than 80 years. First, the Wigner-Witmer diatomic eigenfunction is of no 
value in polyatomic theory, thus cannot serve as an introduction to polyatomic theory, and yet 
diatomic spectroscopy is often presented as a simplified introduction to polyatomic 
spectroscopy. Second, likely most significantly, the Wigner-Witmer diatomic eigenfunction is 
expressed in terms of Wigner’s  -function, and about 40 years elapsed before Wigner’s  -
function was widely accepted into diatomic theory. The present work attempts to revive the 
Wigner-Witmer diatomic eigenfunction. In accord with the postulates of quantum mechanics, 
we assume that a system composed of   electrons and precisely two nuclei is fully described by 
an eigenfunction depending upon      spatial coordinates and time. The time translation, 
spatial translation, and spatial rotation symmetry operators are applied to this eigenfunction. 
The result is the Wigner-Witmer diatomic eigenfunction which is seen to have a reasonably 
sound theoretical basis. Two additional symmetry operators, those for parity and the exchange 
of identical nuclei, are applied to the eigenfunction. The long established results for the nuclear 
spin statistics of a homonuclear molecule are reproduced, but the currently accepted results for 
diatomic parity are not. We believe that our treatment of diatomic parity is the first correct one 
to be given. 

______________________________________________________________ 
 
1. INTRODUCTION

In 1928 Wigner and Witmer [1] published a two-
part article on diatomic theory. The first part gives 
an exact diatomic eigenfunction, and the second 
gives rules correlating the electronic state of a 
diatomic molecule to the orbital   and spin   
coupling of two separated atoms. Oddly, the 
Wigner-Witmer correlation rules became famous 
but the exact Wigner-Witmer diatomic 
eigenfunction from which the rules were obtained 
has been ignored. 
A year earlier, in the introduction to their paper, 
Born and Oppenheimer [2] allude to an exact 

separation of two rotational coordinates in the 
diatomic molecule. In their next section, which is 
applicable to polyatomic molecules, they introduce 
a coordinate system attached to the nuclei whose 
orientation is set by the Euler angles, and note that 
there are terms in the molecular Hamiltonian in 
which both electronic and nuclear coordinates 
appear thereby preventing the exact separation of 
the total eigenfunction into a product of electronic 
and nuclear eigenfunctions. In their final section 
Born and Oppenheimer return to the diatomic 
molecule and give the details of the exact 
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separation of two of the Euler angles, angles   and 
  that describe rotation of the two nuclei. The 
spherical harmonic           is the angular 
momentum part of Born-Oppenheimer diatomic 
eigenfunction. 
We are concerned here with the ignored first part 
of the Wigner-Witmer paper in which they show 
that for the diatomic molecule the Euler angles can 
be made exactly separable dynamical variables of 
the molecule, two of the angles for nuclear rotation 
and the third for electronic rotation. A well known 
relationship exists between the spherical harmonic 
and Wigner  -function, 

                     
    

  
     

   
              

Thus, the Wigner-Witmer exact separation of the 
 -function depending upon all three Euler angles 
is the logical mathematical extension of the exact 
separation of           made a year earlier by Born 
and Oppenheimer. 
In current diatomic theory the third Euler angle is 
excluded or considered redundant. The reasoning 
is that rotation about the internuclear axis of the 
diatomic molecule can only be electronic rotation 
and since by convention the Born-Oppenheimer 
approximation must separate nuclear coordinates 
from electronic coordinates, electronic rotation   
about the internuclear distance and nuclear 
rotation   and   of the internuclear axis must be 
segregated to place   in the electronic 
eigenfunction and   and   in the nuclear 
eigenfunction. 
After the Wigner-Witmer paper, the Wigner  -
function mostly disappeared from diatomic 
literature for about four decades. Hirschfelder and 
Wigner [3] used the  -function in their separation 
of 6 coordinates (3 for the total linear momentum, 
3 for the total angular momentum) for   particle 
systems, but do not explicitly mention the diatomic 
molecule. Again not specifically mentioning the 
diatomic molecule, Curtis et al. [4] repeat the 
separation of 6 coordinates for   particle systems, 
and consider the three-body system in detail. 
Davydov [5] in his quantum mechanics textbook 
used the  -function in his discussion of diatomic 
theory. At about the same time, Rubin [6] 
employed it for his calculations of Hönl-London 
factors. Park and Hirschfelder [7] used the  -
function to separate two angular rotational 
coordinates in the diatomic eigenfunction but 
failed to notice that their Eq. (2.35) holds for all 
values of the third Euler angle, not just    . Zare 
et al. [8] explicitly used the  -function in their case 
(a) basis function. Judd [9] and Mizushima [10], in 
their treatments of diatomic theory, introduce the 
 -function and discuss its mathematical 

properties, but do not explicitly display it in their 
Hund’s cases (a) and (b) basis functions. The 
Wigner  -function has since become a vital 
mathematical component of diatomic theory. 

However, the exact separation of    
  

        in the 

diatomic eigenfunction where the nuclear 
coordinates   and   appear with the electronic 
coordinate   has remained essentially forgotten for 
eight decades. 

2. DERIVATION OF THE WIGNER-WITMER 

DIATOMIC EIGENFUNCTION 
 
We model the diatomic molecule as a system 
composed of   electrons and precisely two nuclei 
who are treated as point masses having spin. We 
consider only the low energy realm appropriate to 
atomic and molecular physics. In accord with the 
postulates of quantum mechanics we assume that 
the molecule is fully described by an eigenfunction 
     , 

                     
                                       

        

depending upon      independent variables, the 
   spatial coordinates            of the   
electrons, the 6 spatial coordinates    and    of 
the nuclei, and time  . The quantum numbers   and 
  are for the total angular momentum   and its  -
component   . The symbol   represents all other 
required quantum numbers and continuous 
indices except for the vibrational quantum number 
 . From the advantage of hindsight we include   
here at the beginning. For the moment, we simply 
note the vast body of experimental evidence 
indicating that the bound states of the diatomic 
molecule possess a vibrational quantum number. 
Later we will show that   is the quantum number 
associated with the internuclear distance   and that 
the total angular momentum of the diatomic 
molecule is independent of  . By the process of 
elimination, one finds that the coordinate   can 
describe nothing but periodic oscillation of the 
diatomic molecule in a bound state. 
The vibrational modes of a polyatomic molecule 
can contribute orbital angular momentum, but the 
single vibrational coordinate   of the diatomic 
molecule cannot. This is a fundamental difference 
between the diatomic molecule and all others, a 
fundamental difference revealed when one 
compares the total angular momentum states of 
the diatomic molecule with those of any polyatomic 
molecule. Rotational invariance and conservation 
of the total angular momentum apply, of course, to 
all molecules, but only for the diatomic molecule 
can the three variables with which one 
demonstrate rotational invariance and the 
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conservation law also, with mathematical 
exactness, be three internal dynamical coordinates 
of the molecule. The polyatomic theorist must use 
the Euler angles to describe rotation of the nuclear 
frame which means that these same Euler angles 
are not those with which one expresses rotational 
invariance and conservation of angular 
momentum. The diatomic theorist again uses the 
Euler angles to describe physical rotations in the 
molecule, but these same rotations are those of 
rotational invariance and conservation of angular 
momentum. This distinction might seem academic 
but the practical consequences are profound. 
In this section we explore what translational and 
rotational symmetry say about the eigenfunction in 
Eq. (2). 

3. TRANSLATIONAL SYMMETRIES OF THE 

DIATOMIC EIGENFUNCTION 

The first steps in derivation of the Wigner-Witmer 
diatomic eigenfunction are (1) application of the 
two-body reduction to the motion of the two 
nuclei, (2) application of the time translation 
(evolution) operator         and spatial 
translation operator         to the 
eigenfunction      , and (3) selection of new 

coordinate origins    and    which convert 
        and         from being symmetry 
operators representing coordinate translations to 
operators representing physical translations in 
time and space. On taking these steps one finds 

                     
                                         

                                                                         

 

The two-body reduction replaces the six 
coordinates of nuclei a and b,              and 
            , with the three coordinates          
of a single fictitious particle of reduced mass  . 

                                                                  

                                                         

                                                   

             
    

     

                                                   

 

and locates the new coordinate origin    at the 
center of mass of the two particles, 

      
         

     

                                           

             
                   

     

                

             
         

     

                                      

                                                                       

 

This forces the center of mass of the two particles 
      in the new coordinate system to be zero. 
Three independent variables are thereby removed 
from the problem allowing us to introduce the 
components of the center of total mass 
                 without an overall increase in 
the number of variables. 

                
             

 
     

         
 
   

                    

 
Only when the new origin    is set at the center of 
mass of two nuclei      , and the momentum 
operator   is set equal to total linear momentum 
    does the spatial translation operator yield 
translational invariance, conservation of the total 
linear momentum, and separation of the three 
coordinates                 . 
Translational invariance in time, conservation of 
the total energy, and separation of   is achieved if 
one simply chooses the time origin    to be the time 
at which some event occurs in the system. 
Separation of time and the total linear momentum 
in conservative systems are treated in detail in 
many quantum mechanics textbooks, and will not 
be discussed in further detail here. The following is 
limited to the internal eigenfunction 

   
                 , that part of the total 

eigenfunction remaining after application of the 
translational symmetries. We will treat rotional 
symmetry in considerable detail because many of 
the most interesting features seen in diatomic 
spectra come from the rotational symmetry of the 
internal eigenfunction. 

3.1 Rotational symmetry of the diatomic 
eigenfunction 

Symmetry operators are defined by their effect on 
the eigenfunction. The evolution operator 
translates the time coordinate, 

                                            

                                                                                       
 

and the translation operator translates spatial 
coordinates, 

                                             

                                                                                  
 

The rotation operator          is similarly 
defined, but because it has no efect on         or 
        the rotation operator acts only on the 
internal eigenfunction, 
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The primed coordinates are the result of 
coordinate rotation accomplished by the Euler 
rotations  ,  , and  . For example, the rotated 
coordinate vector    is given by 

                           
   

   
   
   

           

  

  

  

                      

The coordinate rotation matrix is given by

 
 

                       

                                                   
                                                    

                    
                (13) 

                                                                                                  

 
Like    in the evolution operator        , and    
in the translation operator        , the Euler 
angles in the rotation operator          are 
parameters of coordinate transformation, the 
arguments (independent variables) of symmetry 
operations. A symmetry operator can produce a 
new mathematical description of the system but 
must leave the system physically unaltered. 
However, if one can succeed in equating the 
argument of a symmetry operator to a physical 
variable of the system, the symmetry operator 
becomes an operator describing physical motion. 
Thus, by equating    to the occurrence of some 
physical event, we made the evolution operator 
        become the mathematical description of 
the temporal evolution of the system. Similarly, by 
expressing the total linear momentum in terms of 
the coordinates of the center of total mass, we 
made the translation operator become a 
mathematical description of the total linear 
momentum of the system. Can one perform the 
analogous trick using the rotation operator 
        ? Those of us who work with atomic and 
molecular system have become so accustomed to 
making separations of time and total linear 
momentum from the remainder of a conservative 
system we might forget that         and 
        began their theoretical lives as 
symmetry operators, not descriptions of physical 
motion. Hirschfelder&Wigner attempted to find a 
general way of making the rotation operator 
         simultaneously serve as a symmetry 
operator and description of physical rotation? In 
our estimation they failed because they express 
their final result in terms of “the principle axes of 
inertia”, a term lacking a mathematically precise 
quantum mechanical definition. In general, the 
Euler angles of rotational invariance are not 
angles of physical rotation. The diatomic molecule 
is perhaps the most complex system for which the 
rotation operator          can serve as the 
continuous, unitary operator associated with 
rotational invariance and conservation of the total 
angular momentum and simultaneously in a 

mathematically exact way describe three internal 
rotations of the molecule. 
According to the quantum theory of angular 
momentum, the square of angular momentum    
and one component of  , conventionally chosen to 
be the  -component   , commute with the 
Hamiltonian. That is,    and    are members of the 
complete set of commuting observables (CSCO), 
and      is an eigenvector of the operators    and 
  . In general, the    axis of rotated coordinates 
does not coincide with the original   axis. The 
nature of angular momentum gives one no choice 
but to consider a second magnetic quantum 
number   associated with the    component of  , 
and equations such as 

        
                                                       

which relate the      and      states. Expressed in 
terms of      states and the transformation 
coefficients,         , the internal diatomic 
eigenfunction from Eq. (3) reads 

                    

             

 

    

                                         
 

On applying                    to both sides one 
obtains 

                    

   

 

    

                             

                     

   

 

    

                           
  

                 

 

The Wigner  -function or rotation matrix element 
is defined by 
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The internuclear vector   has the spherical polar 
coordinates  ,  , and  . The angles   and   specify 
the direction of the internuclear vector   in the 
laboratory coordinate system. That is,   and   
describe physical rotation of the two nuclei. It is 
well known that the parameters of coordinate 
rotation   and   describe rotations taken in the 
same directions about the same axes as the 
spherical polar coordinates   and  . See, e.g, 
Edmonds [11], p. 6, or Zare [12], p. 77. After 
coordinate rotation,  ,  , and   become   ,   , and 
  , but      because the internuclear distance is 
a scalar. The physical rotation   and the 
coordinate rotation   are both counterclockwise 
rotations taken about the   axis. The coordinate 
rotation   gives a new value to the physical 
rotation, 

                                                

Similarly, the physical rotation   and the 
parameter of coordinate rotation   are 
counterclockwise rotations taken about the same 
axis, the first intermediate   axis of the total 
coordinate rotation. After coordinate rotation, 

                                              

Rewritten in terms of the spherical polar 
coordinates of internuclear vector, Eq. (16) reads 

                  

   

 

    

                                
  

       
 

(20) 

We are at liberty to chose   and   to serve our 
purposes. The choices     and     remove the 
   and    dependence from 
                             and Eq. (20) becomes 

                  

   

 

    

                          
  

        
    

(21) 

The angles   and   in the Wigner  -function 

   
  

        are physical rotations but the third 

angle   remains a parameter of coordinate 
rotation. It turns out that there is a simple way to 
replace   with   where the latter is physical 
rotation of an electron about the internuclear axis. 
We arbitrarily select one of the electrons, say the 
one we arbitrarily called electron 1, and express its 

rotated coordinate vector     in terms of its 
rotated cylindrical coordinates   ,   , and   . The 
physical rotation   and the coordinate rotation   
are counterclockwise rotations about the    axis, 
(i.e., the internuclear axis). Thus, the coordinate 
rotation   gives a new value to the physical 
rotation  , 

                                               

We are again at liberty to choose the Euler angle 
to suit our purposes (simplification of the 
equations). The choice    , along with the 
choices     and    , remove, with 
mathematical exactness, the three Euler angles   , 
  , and    from the diatomic electronic-vibrational 
eigenfunction                          . Primes 
have been dropped from   and   because they, like 
the internuclear distance  , are scalars. The 
quantum numbers   and   have been dropped 
from                           because it is not an 
eigenvector of the total angular momentum. The 
Euler angles  ,  ,   are associated with rotational 
invariance (under coordinate rotation) and 
conservation of the total angular momentum of 
the diatomic molecule while simultaneously being 
three physical rotations of the diatomic molecules. 
In the present context the Wigner&Witmer 
diatomic eigenfunction, their Eq. (6), reads, 

                              

   

 

    

                            
  

        
         

The diatomic eigenfunction is exactly separated 
into the product two basis functions, the 
electronic-vibrational eigenfunction and the 
Wigner  -function.  
Equation (23) was obtained without consideration 
of the diatomic Hamiltonian. The masses, charges, 
and spins of the electrons and nuclei were not 
mentioned above. They appear, of course, in the 
Hamiltonian. The Wigner-Witmer eigenfunction 
will not yield a detailed description of a specific 
molecule until it is operated on by the 
Hamiltonian for that molecule. The mathematical 
form of the Wigner-Witmer eigenfunction is 
largely determined by the symmetries of 
homogeneous time and space and isotropic space. 
Aside from the particulars that a diatomic 
molecule is composed of   electrons and two 
nuclei, the mathematical form of the Wigner-
Witmer diatomic eigenfunction is solely 
determined by these fundamental symmetries. It 
rests on a reasonably sound theoretical 
foundation. The following sections are concerned 
with its practical value in diatomic spectroscopy. 
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The quantum numbers  ,  , and   are total 
angular momentum quantum numbers. The 
isotropy of space ensures that all spins are 
included, but advantage of this cannot be taken 
until one constructs angular momentum coupling 
models describing how the various orbital and 
spin momentum interact to form the total. 

4. DIATOMIC PARITY 

Like translational and rotational symmetry, parity 
is a symmetry related to coordinate 
transformation. The parity operator   changes the 
sign of each Cartesian spatial coordinate. 

                    

                                                             
 

Whereas translation and rotation are continuous, 
the parity operation, the topic of this section, and 
the exchange of identical particles, the topic of the 
following section, are discrete. A discrete 
symmetry is both unitary and Hermitian, and the 
only possible eigenvalues are   . 
Because spin is not expressible in terms of spatial 
coordinates, spin is unaffected by symmetry 
operators that act on spatial coordinates. For 
example, the operator that exchanges two 
identical particles must incorporate a spin 
exchange operator because merely exchanging the 
particles’ locations does not exchange their spins 
(see the following section). 
Comparison of the matrix equation 

 
  
  
  

   
    
    
    

  
 
 
 

                      

with the equation for coordinate rotation (13) 
shows that the parity operation is formally a 
rotation but with a fundamental difference. The 
determinate of the coordinate rotation matrix is 
+1, the mark of a so-called proper rotation while 
the determinate of the parity matrix is -1 marking 
it as an improper rotation. All physical rotations 
are proper. Physical rotation never produces an 
inversion of the signs of all cartesian coordinates. 
Whereas actual physical motions can duplicate 
coordinate translations in space and time and 
rotations in space, physical motion cannot 
duplicate the parity transformation. 
Equation (24) serves to define the parity operator 
 , but a version of   that can operate on the right 
side of Wigner-Witmer equation (23) is needed. A 
relationship between angular momentum and 
parity is seen in the multipole expansion of an 
electromagnetic wave wherein each term 
corresponds to definite a value of angular 
momentum and a definite value of parity. The 

intimate relationship between angular momentum 
and coordinate rotation, and the similarity 
between Eqs. (13) and (25) also suggest a 
relationship between coordinate rotation and 
parity. The parity operator cannot be constructed 
purely from coordinate rotation because the 
determinant of the rotation matrix (13) is +1 while 
the determinant of the parity matrix (25) is -1. 
However, because the determinant of the product 
of two square matrices is the product of the 
individual determinants, one can construct the 
parity operator as the product of an improper 
rotation and a proper rotation. That is, the 
diatomic parity operator can be constructed as the 
product of two operators, one an improper 
rotation which inverts the signs of some of the 
cartesian coordinates while a second proper 
rotation inverts the sign of the remaining 
cartesian coordinates. 
Table I shows three different discrete but proper 
rotations      that change the signs of two of the 

three components of a rotated spatial vector 
            . The full parity operator can be 
constructed from one of the operators      from 

Table I and the improper operator    whose 
function is to invert the sign of that coordinate 
whose sign is not inverted by     , 

                                             

 
Table I - The sign changes on the components x’, y’ and z’ of a 
coordinate vector r’(x’,y’,z’) produced by three different 
discrete Euler angle transformations, and the effect of these 

Euler angle transformations on    
  

        

 

Group Euler angle Coordinate  

notation transform. transform. Effect on    
  

        

                    

                           
  

        

              

                     

                         
  

        

               

                   

                       
  

        

              

    

The first entry in Table I is chosen because in this 
case the effect of      is independent of  . Thus, 

     inverts the signs of    and    components of 

rotated spatial vectors which in turn means that 
   must invert the    components of rotated 
spatial vectors in order that the product         

invert all three components of each rotated spatial 
vector. Application of the operator    to the 
Wigner-Witmer eigenfunction gives 
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where     is the eigenvalue of   . Application of 
     to the Wigner-Witmer eigenfunction gives 

 
                                

   

 

    

                                         

      
  

       

          

 

    

                        
  

               

 

The eigenvalue      is taken from Table I, 

 
                                            

The minus sign on   in      
  

        was dropped 

because changing the sign of   only changes the 
order in which the sum in Eq. (28) is formed. The 
only possible eigenvalues for the Hermitian parity 
operator   are   , but the operator      is clearly 

not Hermitian because its eigenvalue      is not 

real when   is half-integer, 

        
  

                     
  

                

                 
  

                                                    

              
  

                                             

                
  

                                   

 

The factor       is always    for integer   and 
always    for half-integer  . This explains why the 
  in Eq. (30c) is replaced by   in Eq. (30d). If the 
eigenvalue      is purely imaginary for half-

integer  , then the eigenvalue     of the operator    
must also equal     for half-integer   to ensure that 
the product of eigenvalues          is real. In 

summary, the diatomic parity operator   is the 
product of two operators    and     . The 

eigenvalue of   is, of course,   , and the product 
of eigenvalues         , 

                                               

is always    as required, but for half-integer   the 
individual eigenvalues     and      are purely 

imaginary. 
A widely accepted convention allows one to treat 
the parity eigenvalues     and      as real for both 

integer and half-integer   [13]. If one agrees to 
always subtract     from half-integer values of  , 
then the diatomic parity can be written as 
 

                                                

               
 
                             

 

in which        is always real. 
Parity is a member of the complete set of 
commuting observables (CSCO). If a matrix 
representation of the Hamiltonian can be 
computed in a complete basis, and the matrix 
representation of parity is known in this same 
basis, then the matrix that diagonalizes the 
Hamiltonian must also diagonalize the matrix 
representation of parity. This is the physical basis 
of an algorithm for computing diatomic parity 
during the process of fitting term differences from 
model upper and lower Hamiltonian matrices to 
experimentally recorded wavenumbers. 

5. EXCHANGE SYMMETRY OF IDENTICAL NUCLEI 

In previous sections of this article, the symbols  , 
 , and   refer to the true total angular 
momentum including all orbital and spin 
momenta. In this section spectroscopic 
nomenclature is more closely followed. Nuclear 
spin is excluded from  ,  , and  , and the total 
angular momentum quantum numbers are  ,   , 
and    

 . Many spectra of homonuclear diatomic 
molecules are recorded with spectral resolution 
too low to reveal hyperfine structure but the 
spectra nevertheless reveal an influence of nuclear 
spin on spectral line intensity. This common 
circumstance is the topic of this section. 
Exchange symmetry, like parity, is a discrete 
transformation. Thus, the operator     that 
exchanges two identical nuclei arbitrarily labeled a 
and b – unrelated to Hund’s cases (a) and (b) – is 
both unitary and Hermitian, and its only 
eigenvalues     are   . However, the parity and 
exchange operators differ in important ways. 
Whereas physical motion cannot accomplish the 
parity operation, physical motion can exchange 
nucleus a and nucleus b. Also, the parity operator 
  has no effect on spin, but the exchange operator 
does exchange the spins. Replacing the location of 
each nucleus with that of the other does not swap 
their spins. Construction of     requires an 
operator to exchange the spatial nuclear 
coordinate vectors and an operator to exchange 
their spins. 
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For two identical particles whose locations are 
given in a coordinate system whose origin lies at 
the center of mass of the two particles, the parity 
operator replaces the coordinates of each with 
those of the other. If an operator     that 
exchanges the spatial coordinates of the identical 
nuclei a and b can be found, then the exchange 
operator     can be expressed as the product 
       , 

                                               

in which     is the operator that exchanges the 
identical nuclear spins    and   . The operator     
can be built from the total parity operator   and 
yet another parity operator     that acts only on 

electronic coordinates and serves to undo what   
has done to the electronic coordinates, 

                                              

Note that our use of the letter   in the symbol     
might lead one to think     is a parity operator. 
Because     is the product to two parity operators 
(i.e., the product of two improper rotations)     is 
itself a proper rotation, not a parity operator. One 
can call     a coordinate exchange operator. The 
operator     for the exchange of two identical 
nuclei (33) is then the product of the coordinate 
exchange operator     and the spin exchange 
operator    . 
Using (26) for the total parity operator  , one 
arrives at the following equations for the exchange 
operator    , 

                                               

                                               
 

and its eigenvalue    , 

                                                      

              
 
                                    

                                                                           

 

 
in terms of    , the eigenvalue of    , and    , the 

eigenvalue of    . 
The Clebsch-Gordan combination of the two 
angular states        and       , 

        

  

      

  

      

                            

(37) 

is physically correct only when        and        
are independent (i.e., do not interact). The 
magnetic moment of a nucleus is so small that 

construction of total nuclear spin states       
states from nuclear spin states        and        
of the nuclei is justified. The total nuclear spin is 
given by 

                                              

and the combination of        and        states by 

                                                                                           

    

  

      

  

      

                             
 

(39) 

The interaction between      and       is also 
very small. The total angular momentum   is 
given by 

                                                

and the total angular momentum states       by 

                                                                                      

   

 

      

 

    

                                         
 

A nuclear-spin dependent version of the diatomic 
eigenfunction can now be written, 

                                

    

 

    

 

    

                            
  

       

     

  

      

  

      

 

      

            

                                                                         

 

The right side now has something on which the 
nuclear spin exchange operator     can operate. 
The nuclear exchange symmetry of a given 
homonuclear diatomic molecule is fixed. 
Depending upon whether         is integer or 
half-integer all states will be symmetric — 
       — or antisymmetric —        — but 
for states of a given exchange symmetry, some will 
have positive (even) total parity —      — while 
others will have negative (odd) total parity — 
    . One determines the influence of nuclear 
spin on the spectrum of a homonuclear diatomic 
molecule by counting the number of positive 
positive parity states    and the number of 
negative parity states   . In a spectrum recorded 
with a resolution inadequate to show hyperfine 
structure, for practical purposes the nuclear spin 
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states are degenerate and the number of even 
parity states    and number of odd parity states 
   can be viewed as statistical weights. 
The eigenvalues     of the nuclear spin exchange 
operator    , 

                                                   

                                           
 

come from a symmetry of the Clebsch-Gordan 
coefficients, 

                                                

for the case      . Using the above equations one 
can express the parity eigenvalue for a 
homonuclear diatomic molecule as 

  
   

       

                                       

The eigenvalue     is fixed for a given molecule, 
and the eigenvalue     is fixed for a given 

electronic state of that molecule. Thus, the total 
parity   for a given molecule in a given electronic 
state is controlled by the eigenvalue of the nuclear 
spin exchange operator    . Determination of the 
nuclear spin statistical weights consists of 
counting the number of states for which     
        is positive and the number of states for 
which     ia negative. By counting the number of 
positive and negative states for various values of  , 
one can deduce 

               
          

                                        

            
              

                                 

and further deduce that the ratio of statistical 
weights is given by 

  

  

 
   

 
                                         

can produce an alternation of intensity with 
increasing   in diatomic spectra. Figures 1 and 2 
give examples of intensity alternation for resolved 
 -doublets. A surprise that has come from using 
the Wigner-Witmer diatomic eigenfunction is the 
observation that the    parity operator, seen in in 
Eq. (26) to be a component of the total diatomic 
parity operator, is applicable to all electronic types 
of electronic states, not just   states for which 
   . 

 
Figure 1: A comparison between an experimental spectrum 
[14] of    N               and two synthetic spectra, one 

computed using       and the other computed using     
  . The   doublets are partially resolved.     is the eigenvalue 
of the parity operator     that changes the sign of one cartesian 
component of each molecule fixed electronic coordinate vector. 

 
Figure 2: Two synthetic    C                spectra compared 

with an experimental spectrum recorded by Amiot [15]. The 
comparison indicates the eigenvalue of the parity eigenvalue 
    is +1. 
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